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Using the adaptive time-dependent density-matrix renormalization group, we study the time evolution of
density correlations of interacting spinless fermions on a one-dimensional lattice after a sudden change in the
interaction strength. Over a broad range of model parameters, the correlation function exhibits a characteristic
light-cone-like time evolution representative of a ballistic transport of information. Such behavior is observed
both when quenching an insulator into the metallic region and also when quenching within the insulating
region. However, when a metallic state beyond the quantum critical point is quenched deep into the insulating
regime, no indication for ballistic transport is observed. Instead, stable domain walls in the density correlations
emerge during the time evolution, consistent with the predictions of the Kibble-Zurek mechanism.
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I. INTRODUCTION

New experimental possibilities to manipulate ultracold at-
oms with a high degree of control1–4 have led to a renewed
interest in the dynamics of quantum many-body systems out
of equilibrium. In these systems, the coupling to the environ-
ment is negligible, so that perturbation by external couplings,
which would cause relaxation, does not influence their time
evolution. A particularly simple realization of a time-
dependent perturbation is a so-called quantum quench, in
which a nonequilibrium situation is induced by suddenly
changing one or more parameters of the system, such as the
interaction strength between the particles. In bosonic sys-
tems, experiments have been realized in which a collapse and
revival of the initial state is observed,1 as well as others in
which relaxation to nonthermal states in one dimension,2

where the system becomes virtually integrable, takes place.
Of particular interest are quenches through a quantum critical
point.3,4 When such quenches are fast enough and end in a
phase characterized by spontaneously broken symmetry,
Kibble5 and Zurek6,7 have predicted the spontaneous forma-
tion of topological defects. In this scenario, domains with
different realizations of the possible vacua of the broken-
symmetry state are created, giving rise to topological defects.

Recent theoretical work has investigated the nature of
quasistationary states in correlated quantum systems reached
a sufficiently long time after quenches.8–13 In addition to
studying the long-time behavior, it is also of interest to pro-
vide a physical picture for the mechanism of the evolution by
investigating the short-time behavior of relevant correlation
functions. In the case where the quench is performed at a
critical point, Calabrese and Cardy14,15 have provided a gen-
eral picture based on renormalization-group arguments and,
in one dimension, on boundary conformal field theory. In
particular, for a one-dimensional system which possesses
quasiparticle excitations with a typical velocity v, they pre-
dict the formation of a light cone, i.e., correlations between
points at distance x are established after time t�x /2v. This
general picture has been numerically confirmed recently in
the Bose-Hubbard model using the adaptive time-dependent

density-matrix renormalization group �t-DMRG� �Refs.
16–18� and exact diagonalization techniques.19 This system
is known to undergo a quantum phase transition from a su-
perfluid to a Mott-insulating phase. The numerical results
indicate that a horizon is created irrespective of the criticality
of the system, confirming the picture of Calabrese and Cardy
that the ballistic transport of quasiparticle excitations is the
leading contribution to information transfer in a generic
quench.

Here we study a system of spinless fermions on a one-
dimensional lattice at half-filling with a nearest-neighbor re-
pulsion V using the t-DMRG method. This model is equiva-
lent to the anisotropic Heisenberg �XXZ� chain and can be
obtained from it by applying a Jordan-Wigner
transformation.20 At Vc=2th, where th is the nearest-neighbor
hopping amplitude, the ground-state phase diagram of the
model contains a quantum critical point separating a
Luttinger-liquid �LL� phase �V�Vc� from a charge-density-
wave �CDW� insulator. The CDW phase corresponds to a
spontaneous breaking of lattice translational symmetry
through the doubling of the unit cell, so that there are two
degenerate sectors for the ground state. Hence, for a suffi-
ciently rapid quench into the CDW phase, domain walls
might be expected to be created, as predicted by the Kibble-
Zurek mechanism. We carry out quenches starting with ini-
tial states in either phase and suddenly change V to a value
that corresponds to another point in the same phase, to the
other phase, or to the critical point. This will allow us to
study the extent to which the picture of Calabrese and Cardy
is valid, as well as the details of the evolution of the density
correlation function in a regime that goes beyond the scaling
theory of the Kibble-Zurek mechanism. In addition, we con-
sider the time evolution of the von Neumann entropy of sub-
systems of varying size, which provides a measure of the
spread of entanglement in the system.21–24

The paper is organized as follows. In Sec. II, we describe
the model, how the quench is carried out, and some details of
the calculations. In Sec. III, we present our results for the
density correlation functions and the block entropy for the
various quench scenarios. In Sec. IV we summarize and dis-
cuss our findings.
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II. MODEL AND METHOD

In the following, we consider interacting spinless fermi-
ons on a one-dimensional lattice at half-filling, described by
the Hamiltonian

Ĥ = − th�
j

�cj+1
† cj + H . c .� + V�

j

njnj+1, �1�

with nearest-neighbor hopping amplitude th and nearest-
neighbor repulsion V. The operator ci

�†� annihilates �creates� a
fermion at lattice site i, and ni=ci

†ci is the local-density op-
erator at site i. In the following, we take �=1, set the lattice
constant a=1, and measure energies in units of th and times
in units of 1 / th. We denote the above Hamiltonian for a
given value of V as H�V�. The ground-state phase diagram of
the integrable quantum system described by H�V� can be
obtained via the Bethe ansatz25 and is well known to contain
a quantum phase transition at Vc=2 from a Luttinger-liquid
regime for V�Vc to a charge-density-wave insulating regime
for V�Vc, in which translational symmetry is spontaneously
broken in the thermodynamic limit. We are interested here in
the time evolution after a quantum quench in which the ini-
tial state of the system is prepared in the ground state of the
Hamiltonian H�V0� with an initial value of the interaction set
to V0=0.5 or V0=10, i.e., we consider quenches starting from
both a metallic state and an insulating one. After the quench,
i.e., the sudden change in the interaction parameter, the dy-
namics of the closed quantum system is governed by the
Schrödinger equation with Hamiltonian H�V�, with a value
V�V0. Quenches that cross the quantum critical point will
be treated, as well as those that remain within the same
phase. We calculate the time evolution of the equal-time den-
sity correlation function

Ci,j�t� = �ni�t�nj�t�� − �ni�t���nj�t�� , �2�

as well as the local density �ni�t�� of the system. The time
evolution of these observables is computed using the adap-
tive t-DMRG for systems with L=49 and, in some cases, L
=50 lattice sites, both with N=25 particles. In choosing an
odd number of lattice sites, we ensure a unique ground state
in the CDW regime, accessible to the DMRG method. The
results presented for Ci,j�t� are computed from the center of
the system. We confirm explicitly that reflection symmetry
remains conserved over the time periods considered. We per-
form the calculations by fixing the discarded weight to 10−9,
keeping up to several hundred states during the time evolu-
tion. In the following, we concentrate on the behavior of the
system for times t�5, whereas in a previous publication,11

we focused on the long-time relaxation behavior after a
quantum quench in this system.

As an additional probe for the propagation of information
through the system after the quench, we calculate within the
t-DMRG the time evolution of the von Neumann entropy for
a subsystem A of l sites,

Sl�t� = − Tr��A log��A��t�� , �3�

where �A�t� is the reduced density matrix of the subsystem.26

The von Neumann entropy in Eq. �3� is a measure of the
entanglement of subsystem A with the remainder of the sys-

tem. Its time evolution therefore enables us to quantify the
growth of the entanglement in the quantum system after the
quench.21–24 In Secs. III A–III C, we will discuss the propa-
gation of information and entanglement after the quantum
quench based on the time evolution of the quantities de-
scribed above.

III. RESULTS

A. CDW initial state

We begin the discussion of our results by considering
quenches that start from a CDW ground state, i.e., H�V0�
with V0=10. In Fig. 1, we provide a two-dimensional repre-
sentation of the time evolution of the equal-time density cor-
relation function Ci,j�t� for V=0, 2, 5, and 20, corresponding
to Hamiltonians H�V� with �noninteracting� Luttinger liquid
�V=0�, quantum critical �V=2�, or CDW �V=5,20� ground
states, respectively. At time t=0, the density correlations de-
cay exponentially with the separation 	i− j	 due to the charge
gap of the CDW ground state. After the quench, we observe
that the time evolution of Ci,j�t� exhibits a pronounced sig-
nature of a light cone in all cases. The local densities at two
separated lattice sites remain essentially uncorrelated up to a
time td, which increases linearly with their spatial separation
d= 	i− j	. The corresponding propagation velocity u of the
front can be obtained from the slope of the light cone using
td=d /u. For systems describable by conformal field theory
and for various exactly solvable models, both in the con-
tinuum and on discrete lattices, Calabrese and Cardy have
shown that the velocity of this light-cone-like spread of the
correlations is twice the maximal group velocity v of the
fastest excitations. The relevant excitations in the present
model of spinless fermions are the sound modes of the local-
density fluctuations. In particular, for the free case V=0, the
slope of the first front corresponds to u�V=0�=2vF=4th, as
expected, where vF denotes the Fermi velocity for V=0. In
addition to the light cone, additional propagation fronts at
later times can be identified in Fig. 1�a�, which, however,
possess a lower velocity. This signals that slower quasiparti-
cles stemming from regions without linear dispersion also
participate in spreading information. Figure 1�c� shows the
evolution of the correlation function for a quench within the
CDW phase, i.e., a case which should not be describable by
conformal field theory. Interestingly, we nevertheless find a
pronounced light-cone behavior in the correlation function.
Although the conformal field theory underlying the treatment
of Calabrese and Cardy is not valid in this region, the physi-
cal picture that ballistically propagating quasiparticles are
generated by the quench seems to hold. However, in contrast
to the case of the quench to the LL displayed in Figs. 1�a�
and 1�b�, we see that a strong alternating pattern forms in the
density correlation function and remains present and qualita-
tively unchanged after the onset of the light cone.

A more detailed view of the temporal evolution of the
correlation functions is shown in Fig. 2, in which we plot the
values of Ci,j�t� as a function of time for increasing distance
	i− j	 for V=0 and V=2, the two extremes of the Luttinger-
liquid phase. After the arrival of the first signal, oscillatory
behavior as a function of time can be observed at each dis-
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tance. However, as V is increased, the observed oscillations
both decrease in magnitude and are damped out more rap-
idly. Comparing the results for the free case to the ones ob-
tained for V=2 in Fig. 2, it can be seen that the incoming
front travels with a higher velocity when V is larger, as can
also be seen in Fig. 1.

In contrast to the oscillatory behavior in the Luttinger-
liquid phase, a steady increase in the correlations is observed
when the quench occurs within the CDW phase, as can be
seen in Fig. 3. The alternating pattern imprinted at the onset
of the light cone is preserved. Presumably, the correlation
functions saturate at some time that is significantly longer
than the maximum time reached here. While results for both
V�V0 and V�V0 show the same qualitative behavior, a dif-
ference is observed in the rate and the form of the increase in
the correlation functions. The increase in the data is stronger
for V=5 in Fig. 3 but is sublinear, while the increase is linear
to a very good approximation for V=20.

This increase in correlations is remarkable. The length
over which the correlation function falls off is much larger
than the initial correlation length after the quench, as can be
seen in Fig. 4 by comparing the initial Ci,j�t� �Fig. 4�a�� with
the results for later times. This is analyzed in more detail in
Fig. 5 for the quench from V0=10 to V=5. As can be seen on
the semilogarithmic scale, 	Ci,j�t�	 decays exponentially for
intermediate distances at all times t�5. The correlation
length and the distance over which the decay is exponential
both increase substantially with time. This can be contrasted
to the results of Ref. 9 for the Luttinger model where, start-
ing from a gapless phase, an algebraic decay of the correla-
tions is found.

Note that the characteristic velocity of the light cone in-
creases as V is changed from V=0 to V=2, as can be seen in
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FIG. 1. �Color online� Time evolution of the equal-time density correlation function Ci,j�t� of spinless fermions after a quench from the
CDW ground state of H�V0� with V0=10, evolved by the Hamiltonian H�V�, with �a� V=0, �b� V=2, �c� V=5, �d� and V=20.
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FIG. 2. �Color online� Equal-time density correlation function
Ci,j�t� of spinless fermions after a quench from the CDW ground
state of H�V0� with V0=10, evolved by the Hamiltonian H�V�, with
V=0 and V=2, at fixed separations �a� 	i− j	=2, �b� 6, �c� 10, and
�d� 14 as functions of time t. The black vertical lines indicate the
position of the horizon for V=0, which moves with velocity u=4,
and the dashed vertical lines a horizon moving with velocity u
=2v�V=2�=2�.
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Figs. 1�a� and 1�b� and in Fig. 2, but is approximately the
same for V=5 and V=20, Figs. 1�c� and 1�d� and Fig. 3. The
increase in velocity in the Luttinger-liquid phase can be un-
derstood on the basis of the Bethe ansatz solution of the
equivalent spin-1/2 XXZ model,25 where the relevant maxi-
mum mode velocity in the Luttinger-liquid regime V�2 can
be obtained as27

v�V� = vF
�
1 − �V/2�2

2 arccos�V/2�
, �4�

where in our case vF=2th. It can be seen that the front propa-
gating with velocity u=2v�V� indeed coincides with the
shoulder of the first peak in the signal of Ci,j�t� in Fig. 2. We
display the light-cone velocities for different values of V in
Fig. 6, together with the result from the Bethe ansatz. We see
that inside the Luttinger-liquid regime, V�2, the horizon
travels at a velocity u�V� that approximately follows the
Bethe-ansatz prediction 2v�V�, but is consistently somewhat
smaller, except at V=0. We thus confirm the general picture
obtained by Calabrese and Cardy of ballistic propagation of
information through the system, but find that the propagation
does not take place with the maximal possible velocity. On
general grounds, conformal field theory becomes exact in the
asymptotic limit of a continuum theory in which the quasi-
particles have a linear dispersion relation. However, after the
quench, quasiparticles are excited over a broad energy range

and hence generally have velocities lower than the maximum
set by Eq. �4�. We attribute the reduced apparent light-cone
propagation velocity found in Fig. 6 to the contribution of
these lower-velocity quasiparticles.

For values of the interaction beyond the quantum critical
point, the velocity of the horizon can still be determined, as
is evident in Figs. 1�c� and 1�d�. This velocity continues to
increase up to V�5. Beyond this value, u�V� remains essen-
tially constant, as could already be seen in Fig. 3.

We conclude this section by comparing the commensura-
bility of the correlations after quenches that remain in the
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FIG. 3. �Color online� Equal-time density correlation function
Ci,j�t� of spinless fermions after a quench from the CDW ground
state of H�V0� with V0=10, evolved by the Hamiltonian H�V�, with
V=5 and V=20, at fixed separations 	i− j	=2 �a�, 6 �b�, 10 �c�, and
14 �d� as functions of time t after the quench.
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FIG. 4. �Color online� Equal-time density correlation function
Ci,j�t� after a quench from the CDW ground state of H�V0� with
V0=10, evolved by the Hamiltonian H�V�, with V=5 and V=20, at
fixed times �a� t=0, �b� t=1.4, �c� t=2.8, and �d� t=4.2 �d� as
functions of the separation 	i− j	.
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V0=10 to V=5. The black lines are fits to exponential decays.
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CDW phase to that of ones quenching to the LL phase. The
presence of a CDW ground state for V0=10 leads to strong
commensurate spatial oscillations in Ci,j�t� which increase in
time, as demonstrated for V=5 and V=20 in Fig. 4. For
quenches beyond the insulating regime, however, we also
observe spatial oscillations in Ci,j�t�, but with larger spatial
periods incommensurate to the underlying lattice �see Fig.
1�. In the propagating quasiparticle picture of Calabrese and
Cardy, such spatial oscillations are expected to arise in the
time evolution of correlation functions as a generic property
of a system with a nonlinear dispersion relation. It is rather
remarkable that for interaction quenches that stay within the
CDW regime, the time evolution leads to the buildup of ex-
tended commensurate correlations even though the ground
states in this insulating regime possess a very fast exponen-
tial decay of the very same correlation function.

B. Luttinger-liquid initial state

We now consider quenches that start from the Luttinger-
liquid ground state of H�V0�, taking V0=0.5. We focus par-
ticularly on quenches that go beyond the quantum critical
point to the symmetry-broken CDW regime. In Fig. 7, we
show the time evolution of the equal-time density correlation
function Ci,j�t� in a two-dimensional representation for V
=5 and V=40. At t=0, the density correlations Ci,j�0� decay
algebraically due to the critical nature of the V0=0.5 ground
state. For quenches with V�5, a light cone can be identified,
as seen in Fig. 7�a� for V=5, where it is visible for times t
�0.5. Bearing in mind that the predictions of Calabrese and
Cardy are based on an initial state with a finite correlation
length, this finding is somewhat surprising. The slow alge-
braic decay of the correlations in the initial state causes the
central site and the site at the boundaries of the system to
already be correlated at t=0. Therefore, the propagation of
entangled quasiparticles created by the quench at the open
boundary of the system leads to an additional signal which
appears at decreasing values of 	i− j	 when t is increased.

This can be seen in Fig. 7�a� for sufficiently small values of
	i− j	�10 for times 1� t�2, where an additional light cone
moves toward the left at a velocity approximately half of the
velocity of the main light cone. This observation is in agree-
ment with the picture of Calabrese and Cardy applied to a
semi-infinite chain: the left-moving signal in Ci,j�t� is caused
by the ballistic propagation of a pair of quasiparticles created
during the quench, one of which is reflected at the open
chain boundary.

We now turn to quenches deep into the CDW regime. In
Fig. 7�b�, our results for the quench from V0=0.5 to V=40
are displayed. It is not possible to identify the signature of a
light cone in the data. Here Ci,j�t� does not change signifi-
cantly for times t�1 / th=1, the typical time scale of a single
fermion hopping process. In contrast to the previous cases,
phase slips, marked by a reversal of the phase of the alterna-
tion of the correlations, are present. These phase slips are
pronounced in Ci,j�t� for V=40, but can also be seen for V
=5 at distances 	i− j	=6–7 for times t�2. This can be seen
in more detail in Fig. 8, where the phase slips for V=40 are
clearly visible in Figs. 8�b�–8�d� �corresponding to times t
�1.4�, while for V=5 they only appear in Figs. 8�c� and
8�d�.

The presence of such phase slips in the correlation func-
tion is not observed in the quenches starting from a CDW
state which we discussed above, and suggests the presence of
different CDW domains in the local-density distribution
which are separated by domain walls. Therefore, we now
analyze the time evolution of the local density �ni��t� di-
rectly. Results for the local-density distribution at t=5 are
shown for both V=5 and V=40 in Fig. 9. We find that do-
main walls �kinks� which separate different regions of CDW
modulations and are stable in time are formed in the vicinity
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FIG. 7. �Color online� Time evolution of the equal-time density
correlation function Ci,j�t� after a quench from the Luttinger-liquid
ground state of H�V0� with V0=0.5, evolved by the Hamiltonian
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of the boundaries. Comparing the two values of V, we also
find that the number of such domain walls is larger for larger
values of V �at t=5 we identify two such kinks for V=5, and
4 for V=40�. Note that the density �ni��t��0.5 in the middle
of the chain shows almost no oscillation for this exactly half-
filled lattice �L=50, N=25�. The open ends of the chain act
as effective impurities and induce Friedel-type oscillations in
the local density, which fall off similarly to the correlation
function. Therefore, the stability of the domains in �ni��t�
�0.5 reflects the behavior of the phase slips in the density
correlation function. The presence of the phase slips and do-
mains is reminiscent of the scenario proposed by Kibble5 and
Zurek6,7 concerning the generation of topological defects in
quenches that cross a quantum phase-transition point28 to a
regime with spontaneous symmetry breaking. In the corre-
sponding Kibble-Zurek mechanism, the duration of the
quench � is usually assumed to be finite. The characteristic
critical scaling behavior near the crossed critical point leads
to a power-law scaling of the defect density with 1 /�. In the
current situation, the quench is sudden, corresponding to �
=0. The generation of defects in our system is therefore well
beyond the Kibble-Zurek scaling regime. Pellegrini et al.29

have studied the scaling of the energy excess with duration in
an XXZ spin chain undergoing a quench through the critical
point. It would be interesting to study directly the depen-

dence of the defect density on the duration of the quench for
this model in order to link our results for the instantaneous
quench with the scaling prediction of the Kibble-Zurek
mechanism.

C. Entanglement entropy of subsystems

In Secs. III A and III B we have characterized the propa-
gation of information after a quench by the behavior of the
equal-time density correlation function. We find two different
scenarios: �i� information spreads ballistically through the
system and leads to a light cone, and �ii� domain walls form
after a quench deep into the symmetry broken regime, remi-
niscent of the Kibble-Zurek scenario.

The specific quantum nature of the problem under consid-
eration can be further analyzed by directly investigating the
entanglement buildup and spread in the system after the
quench. A direct measure of the entanglement inside the sys-
tem is given by the von Neumann entropy Sl of subsystems
of size l as defined in Eq. �3�. In Fig. 10, we show t-DMRG
results for the time evolution Sl�t� for some of the quenches
considered previously. In all cases, we find that the block
entropy for a particular subsystem size eventually saturates
with time, to a final value that increases linearly with sub-
system size. The initial phase of the time evolution of Sl�t�,
however, shows characteristic differences for the two cases
considered above: for those cases in which a distinct light
cone has been observed in the density correlation function,
the von Neumann entropy initially grows linearly, as seen in
Figs. 10�a� and 10�b� for quenches from V0=10 to V=0 and
V=2, respectively. There is therefore a characteristic time tl
at which the entropy saturates. One finds, to a good approxi-
mation, that tl increases linearly with the subsystem length l,
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FIG. 9. �Color online� Local density �ni��t� for a system of
length L=50 with N=25 particles at time t=5 after a quench from
the Luttinger-liquid ground state of H�V0� with V0=0.5, evolved by
the Hamiltonian H�V�, with �a� V=4 and �b� V=40. Arrows indicate
the location of domain walls �kinks� in the local CDW pattern.
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giving rise to a characteristic entropy propagation velocity
that is roughly equal to the light-cone velocity u extracted
from the density correlation function. The evolution of Sl�t�
in Fig. 10�c�, corresponding to a quench from V0=10 to V
=5, shows more complex initial behavior, with the formation
of intermediate plateaux in Sl�t�, e.g., for l=5, and the pres-
ence of local minima �dips� in Sl�t�, e.g., for l=3. Turning
now to Fig. 10�d�, a quench from a LL initial state with V0
=0.5 to a point deep in the symmetry-broken regime, V
=40, we find a broad sublinear increase rather than a linear
growth in Sl�t�, which, in addition, shows pronounced oscil-
lations that damp out toward saturation. Similar oscillations
were observed in Ref. 30 and were found to be due to the
existence of additional local maxima of the group velocity of
the quasiparticles. Thus, the behavior of Sl�t� further cor-
roborates the qualitative difference between the cases with
ballistic transport, showing a clear light-cone effect in the
density correlation function Ci,j�t�, and cases with no distinct
light cone. An interesting topic for future studies would be to
analyze how the presence of kinks and phase slips in the
local density and the density correlation function relates to
this peculiar sublinear rise of the von Neumann entropy in

more detail, and to understand the origin of the pronounced
initial oscillations.

IV. SUMMARY AND DISCUSSION

In this work, we have studied the time evolution of cor-
relation functions in a one-dimensional, half-filled system of
spinless fermions with nearest-neighbor repulsive interac-
tions. We perturb the system by changing the strength of the
repulsion suddenly, i.e., we quench the interaction parameter
and study the evolution of the density correlations at short to
intermediate times. The investigations were carried out using
the adaptive time-dependent density-matrix renormalization
group. Since the half-filled system has a gapless, metallic
�Luttinger-liquid� ground-state phase for small interaction
strength and a gapped charge-density-wave insulating phase
for large interaction strength, separated by a quantum phase-
transition point, it is possible to carry out quenches both
within the two qualitatively very different phases and from
one phase to another. When we do this, we find that
quenches starting from the CDW insulating phase, either
staying within the phase or quenching to the metallic phase,
are both characterized by a light cone in the density correla-
tion function, i.e., a horizon propagating with constant veloc-
ity, beyond which changes at a particular separation become
visible. For the metallic case, the behavior agrees well with
predictions based on conformal field theory made by Cala-
brese and Cardy,14,15 although there appear to be small cor-
rections to a horizon velocity obtained from the exactly
known velocity of charge excitations.

For quenches within the insulating phase, the presence of
such a clear horizon for all values of the final interaction
strength is a surprise. One might expect a horizon to occur
when the energy scale of the gap is smaller than the excess
energy �relative to the ground state� associated with the
quench, but this does not seem to be the case. While there is
presumably some sort of ballistically propagating quasiparti-
cle associated with the horizon, its nature is not yet clear. In
addition, the quench within the insulator is characterized by
a density correlation function which remains exponentially
decaying, but with a correlation length which grows in time,
at least to the time scales that could be reached numerically.
The behavior of the correlation length with time at longer
times remains to be clarified.

For quenches from a metallic initial state to an insulating
parameter value, the presence or absence of the remnants of
a light cone depend on the strength of the final interaction.
For relatively weak final interaction, a light cone is present to
a time scale characterized by the propagation time to the end
of the chain. Counterpropagating light cones with one-half
the velocity of the initial light cone are also present. The
counterpropagating features can be understood in terms of
quasiparticles propagating in one direction only from the
open ends of the chain. Examination of the correlation func-
tion reveals phase slips in the correlation functions and the
formation of domains in the local density, which are indica-
tions of frozen-in domains generated by the quench. Such
domains are predicted by the Kibble-Zurek mechanism,5–7

which seems to be applicable here even though our sudden
quench falls outside its scaling regime.
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FIG. 10. �Color online� Time evolution of the von Neumann
entropy Sl�t� for subsystems of different sizes l=1,2 , . . . ,25, after
quenches with �a� V0=10→V=0, �b� V0=10→V=2, �c� V0=10
→V=5, and �d� V0=0.5→V=40. The lowest line corresponds to
l=1, the next to l=2 and so on; for clarity, the curves for l�5 are
labeled.
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The behavior of the quantum information �von Neumann�
entropy of subsystems supports the picture obtained from the
behavior of the correlation functions. For cases where a light
cone with a constant velocity is present in the correlation
functions, there is a linear growth of the entropy with time
up to a saturation value associated with the system size. A
velocity associated with the saturation time is consistent with
the light-cone velocity. For the cases with no light cone, the
growth of the entropy with time is sublinear, with no well-
defined saturation time. In addition, oscillatory behavior,

which could be interesting to understand in more detail, oc-
curs.
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